

326296

Segmentation-

based Memory

Protection

Mechanism on

Intel® Atom™

Microarchitecture:

Coding

Optimizations

 October 2011

White Paper

Leonardo Potenza

Software Engineer

Intel Corporation

Segmentation-based Memory Protection Mechanism on
Intel® Atom™ Microarchitecture: Coding Optimizations

2

Executive Summary

The Intel® Atom™ processor is explicitly designed to achieve efficient

performance and low-power operation, adopting special in-order

microarchitecture. The development of highly-optimized software

applications requires the use of specific coding techniques.

The purpose of this paper is to emphasize some aspects of the segmented

memory protection mechanism implemented in the Intel® Atom™

microarchitecture. A developer can use this information to create a

higher-performing solution.

The purpose of this paper is to emphasize some aspects of the

segmented memory protection mechanism implemented in the Intel®

Atom™ microarchitecture. A developer can use this information to

create a higher-performing solution.

The idea is to provide the software developer with guidelines to

understanding the different performance characteristics available

depending on how the segmented memory is configured and to propose

techniques that can be used to improve performance.

Segmentation-based Memory Protection Mechanism on

Intel® Atom™ Microarchitecture: Coding Optimizations

 3

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

www.intel.com/embedded/edc.

http://www.intel.com/embedded/edc

Segmentation-based Memory Protection Mechanism on
Intel® Atom™ Microarchitecture: Coding Optimizations

4

Contents

Introduction ... 5

Paging - The Flat Memory Model .. 5

Segmentation ... 5

Segmentation Details on Intel® Atom™ Microarchitecture ... 6

Segment Base Unaligned to Cache Line Boundary 6

Memory Access Through the Code Segment .. 7

String Operations Using the ES Base Register ... 7

Memory Access Through the Data Segment and Stack Segment 7

Data Segment vs Stack Segment: Write Memory Access Case Study 8

Write Access on Stack Segment .. 8

Write Access on Data Segment ... 10

Write Memory Access: Experimental Data ... 11

Lesson Learned .. 12

Conclusion ... 14

Reference list ... 15

Segmentation-based Memory Protection Mechanism on

Intel® Atom™ Microarchitecture: Coding Optimizations

 5

Introduction

The development of a complex multi-tasking software application requires a
suitable execution environment. One important feature that almost all the
multi-tasking operating systems must provide to ensure safe execution of the
code is a memory protection mechanism.

The run-time environment must prevent a process from touching memory
areas that belong to other processes or to the operating system. The IA-32
architecture provides multiple methods for protecting memory, with a view to
simplifying OS programming.

Paging - The Flat Memory Model

For various reasons, almost all the modern operating systems prefer to base
their memory protection implementation purely on the services provided by
the processor’s Paging Logic.

The widely adopted memory model is the so called “Flat Memory Model”. All
applications see the full virtual address space starting at base address 0.

Before executing an application, the operating system creates a set of virtual-
to-physical address mapping tables. During the execution, all the generated
addresses are submitted to the Paging Logic for a lookup in the application’s
page tables. In addition to the actual virtual-to-physical address conversion,
each page table entry contains a set of other information (for example, the
read/write attribute of the page, the privilege level the program in execution
must meet) allowing the Paging Logic to grant or deny access to the memory
area.

The Flat Memory Model implementation has to guarantee that paging is the
only active memory protection mechanism. The processor’s Segmentation
Logic must be disabled, by programming all the processor segments with
base address value 0 and a size equal to the available address space length.

Segmentation

Even if not so common, there are cases where the memory protection
mechanism is based on the services provided by the processor’s
Segmentation Logic.

In the Segmented Memory Model, different applications see different address
spaces. Moreover, the same application can have different memory areas for
different types of segments (Code Segments, Data Segments and Task State
Segments). Every segment has its own base address and size. Any attempt
to access memory areas outside the segment boundaries is prevented by the
Segmentation Logic run-time checks.

Segmentation-based Memory Protection Mechanism on
Intel® Atom™ Microarchitecture: Coding Optimizations

6

The handling of the segmentation mechanism is usually more complicated,
both for the application and for the OS kernel code, but the flexibility that can
be obtained may be useful in some software solutions.

The use of the segmentation mechanism for memory protection can be found
in a number of scenarios such as when dealing with legacy embedded
applications or when a conventional OS needs to co-exist with a run-time
environment. Some products protect the run-time environment from the
standard OS using segmented memory addressing. Sometimes, segmented
memory addressing is used instead of paging to help meet some specific real-
time requirements.

Segmentation Details on Intel® Atom™

Microarchitecture

The implementation of the segmentation mechanism on Intel® Atom™
microarchitecture is completely backward compatible with the IA-32
instruction set.

Special implementation details should be taken into account when deciding to
deploy the code on a platform featuring the Intel® Atom™ processor.

The Intel® 64 and IA-32 Architectures Optimization Reference Manual Ref [1]
describes how to optimize software to take advantage of the performance
characteristics of IA-32 and Intel 64 architecture processors. As reported in
the specific chapter dedicated to the Intel® Atom™ microarchitecture, the
Address Generation Unit (AGU) assumes that the segment base is zero by
default.

The software developer should be aware that, when using segment base
values different than zero, the load and store operations (access to and from
memory) take longer to complete than a similar operation with a zero stored
in the segment base register.

Segment Base Unaligned to Cache Line Boundary

An operating condition that should be avoided is the use of non-zero segment
base values that are not aligned to a cache line boundary. The maximum
throughput of a MOV operation in this case is reduced to one every nine
cycles (instead of one every cycle).

The selection of the segment base values has to be carefully considered at
the OS or run-time framework implementation level. The software application
developer should never need to cope with this particular situation.

Segmentation-based Memory Protection Mechanism on

Intel® Atom™ Microarchitecture: Coding Optimizations

 7

Memory Access Through the Code Segment

The Code Segment (CS) register points to the memory area in which the
processor instructions are stored. When loading data from memory, the use
of the CS can be explicitly specified, overriding the default segment selector:

For example: MOV AL, CS:[BX]

Using a non-zero value for CS, the maximum throughput of a memory read
operation is reduced to one every nine cycles (instead of one every cycle),
even if the base value is cache aligned.

String Operations Using the ES Base Register

The ES register points to one of the data segments that can be used for
efficient and secure access to different types of data structures.

An important recommendation that needs to be considered when writing
optimized code that deals with a string operation is to favor instructions that
make implicit use of the ES base register for the destination operand. The
maximum throughput is one operation every two cycles. The maximum
throughput becomes significantly lower (one operation every nine cycles) in
all other cases.

However, it is important to note that this performance optimization is useful
only for assembly language programmers or compiler developers that need to
generate optimized code for the Intel® Atom™ microarchitecture.

Memory Access Through the Data Segment and
Stack Segment

Two cases where the software developer’s choices can have significant impact
on code execution times are when the application needs to access data
structures in memory through1) the Stack Segment and 2) the Data
Segment.

The Data Segment (DS) register points to the default segment involved when
loading data from memory and storing data in memory (unless an explicit
segment override has been specified).

The Stack Segment (SS) register points to the data area where the procedure
stack is stored for the handler, program or task currently in execution. The
stack segment is selected for all stack pushes and pops and for any memory
reference that uses the ESP (stack pointer) and EBP (base pointer) as a base
pointer (for further details, refer to Ref [4]).

Assuming that the non-zero segment base values are cache aligned, the
introduced penalty in the memory access varies depending on the particular
segment being used.

Segmentation-based Memory Protection Mechanism on
Intel® Atom™ Microarchitecture: Coding Optimizations

8

The maximum throughput of a MOV operation using the Data Segment (DS)
is reduced to one every two cycles (instead of one every cycle).

On the other hand, the price of using the stack segment is much higher. The
maximum throughput of a MOV operation using the Stack Segment (SS) is
reduced to one every nine cycles.

Data Segment vs Stack Segment:

Write Memory Access Case Study

The purpose of this section is to show the importance of the segmentation
details using simple practical examples.

For simplicity, only the write memory access case study is covered, but
similar examples might be derived using the same methodology.

Using the Intel processor’s internal Time Stamp Counter (TSC) and the
related instructions for time reading, it is quite straightforward to measure
the various memory access delays.

In the following sections, a read operation of the current value of the
processor’s TSC is represented by calling the generic C function

extern uint64_t getTscValue(void);

Refer to the available documentation Ref [2] Ref [3] for the details on how to
implement the above function using the Intel instruction set.

Write Access on Stack Segment

To reproduce a write access to a variable in the stack segment, the code
snippet that can be used is trivial:

#define LOOP_CYCLES_NUMBER 100000

uint64_t StackMemoryWrite (void)

{

 volatile long a;

 int i;

 uint64_t elapsedTime;

 uint64_t tscTicksBefore;

 uint64_t tscTicksAfter;

 tscTicksBefore = getTscValue();

 for (i = 0; i < LOOP_CYCLES_NUMBER; i++)

 {

/* Dummy write accesses on 'a' memory variable

 using stack segment */

Segmentation-based Memory Protection Mechanism on

Intel® Atom™ Microarchitecture: Coding Optimizations

 9

 a = 1; a = 2; a = 3; a = 4; a = 5;

 a = 6; a = 7; a = 8; a = 9; a = 10;

 }

 tscTicksAfter = getTscValue();

 elapsedTime = tscTicksAfter - tscTicksBefore;

 return elapsedTime;

}

Basically, the StackMemoryWrite() function returns the number of TSC ticks

needed to carry out a given number of write accesses to the dummy variable
a (100000 * 10 in the example).

The use of the volatile attribute prevents the compiler from performing

code optimizations on the access to the variable a, which is clearly allocated

on the stack segment.

For instance, this is how the Microsoft Visual Studio* 2010 compiler
translates the code in the for() loop in assembly language, generating the

expected number of write memory accesses on the stack segment:

…

 mov edx, 9

 mov eax, 100000 ; 000186a0H

 lea ecx, DWORD PTR [edx+1]

$LL3@StackMemor:

; 253 :

; 254 : for (i = 0; i < LOOP_CYCLES_NUMBER; i++)

 dec eax

; 255 : {

; 256 : /* Dummy write accesses on 'a' memory variable

; 257 : using stack segment */

; 258 : a = 1; a = 2; a = 3; a = 4; a = 5;

 mov DWORD PTR _a$[esp+16], 1

 mov DWORD PTR _a$[esp+16], 2

 mov DWORD PTR _a$[esp+16], 3

 mov DWORD PTR _a$[esp+16], 4

 mov DWORD PTR _a$[esp+16], 5

; 259 : a = 6; a = 7; a = 8; a = 9; a = 10;

 mov DWORD PTR _a$[esp+16], 6

 mov DWORD PTR _a$[esp+16], 7

 mov DWORD PTR _a$[esp+16], 8

 mov DWORD PTR _a$[esp+16], edx

 mov DWORD PTR _a$[esp+16], ecx

 jne SHORT $LL3@StackMemor

Segmentation-based Memory Protection Mechanism on
Intel® Atom™ Microarchitecture: Coding Optimizations

10

…

Write Access on Data Segment

To reproduce the same type of write access to a variable in the data
segment, the above code snippet can be modified as follows:

#define LOOP_CYCLES_NUMBER 100000

volatile long a;

uint64_t DataSegmentMemoryWrite (void)

{

 int i;

 uint64_t elapsedTime;

 uint64_t tscTicksBefore;

 uint64_t tscTicksAfter;

 tscTicksBefore = getTscValue();

 for (i = 0; i < LOOP_CYCLES_NUMBER; i++)

 {

 /* Dummy write accesses on 'a' memory variable

 using data segment */

 a = 1; a = 2; a = 3; a = 4; a = 5;

 a = 6; a = 7; a = 8; a = 9; a = 10;

 }

 tscTicksAfter = getTscValue();

 elapsedTime = tscTicksAfter - tscTicksBefore;

 return elapsedTime;

}

The new DataSegmentMemoryWrite() function returns the number of TSC

ticks needed to carry out a given number of write accesses to the dummy
variable a (100000 * 10 in the example).

The use of the volatile attribute prevents the compiler from performing

code optimizations on the access to the variable a, which is clearly allocated

on the data segment.

For instance, this is how the Microsoft Visual Studio* 2010 compiler
translates the code in the for() loop in assembly language, generating the

expected number of write memory accesses on the data segment:

…

mov edx, 9

 mov eax, 100000 ; 000186a0H

Segmentation-based Memory Protection Mechanism on

Intel® Atom™ Microarchitecture: Coding Optimizations

 11

 lea ecx, DWORD PTR [edx+1]

 npad 5

$LL3@DataSegmen:

; 280 :

; 281 : for (i = 0; i < LOOP_CYCLES_NUMBER; i++)

 dec eax

; 282 : {

; 283 : /* Dummy write accesses on 'a' memory variable

; 284 : using data segment */

; 285 : a = 1; a = 2; a = 3; a = 4; a = 5;

 mov DWORD PTR ?a@@3JC, 1 ; a

 mov DWORD PTR ?a@@3JC, 2 ; a

 mov DWORD PTR ?a@@3JC, 3 ; a

 mov DWORD PTR ?a@@3JC, 4 ; a

 mov DWORD PTR ?a@@3JC, 5 ; a

; 286 : a = 6; a = 7; a = 8; a = 9; a = 10;

 mov DWORD PTR ?a@@3JC, 6 ; a

 mov DWORD PTR ?a@@3JC, 7 ; a

 mov DWORD PTR ?a@@3JC, 8 ; a

 mov DWORD PTR ?a@@3JC, edx ; a

 mov DWORD PTR ?a@@3JC, ecx ; a

 jne SHORT $LL3@DataSegmen

Write Memory Access: Experimental Data

To show the importance of the implementation of the segmentation-based
protection mechanism on Intel® Atom™ architecture, a simple test has been
carried out.

The above StackMemoryWrite() and DataSegmentMemoryWrite() functions

have been executed on the Intel® Atom™ Processor N450 with the Intel®
82801HM I/O Controller Hub Customer Reference Board (CRB), using two
different run-time environments: Windows* 7 and a commercial RTOS
implementing the segmentation-based memory protection mechanism using
non-zero segment base addresses.

The code has been compiled in both release and debug modes using the two
development environments. The debug configuration is a build option
typically used in the software development phase, as the generated binary
includes additional symbolic debug information and the generated code is not
optimized for execution (the idea is to facilitate source code debugging). The
release configuration is a build option especially designed for the final product
release. The code is optimized to reduce the execution time and the size of
the generated binary (no extra symbols are included).

Segmentation-based Memory Protection Mechanism on
Intel® Atom™ Microarchitecture: Coding Optimizations

12

Due to the simplicity of the original C code, there were no significant
differences between the assembly code generated by the two compilers.

The following table reports the experimental results for the function
simulating the write accesses to the stack segment.

Table 1. StackMemoryWrite() Average Execution Time, Calculated After 100
Consecutive Executions

 Windows*
[TSC ticks]

Commercial RTOS
[TSC ticks]

Ratio
(RTOS/Win)

Release 1,684,050 15,029,565 8.92

Debug 2,357,713 19,685,439 8.34

The experimental data correlates to the one-to-nine ratio reported in Ref [1]
when trying to access variables on the stack segment with segment base
addresses other than zero.

The following table refers to the function performing write access to the data
segment.

Table 2. DataSegmentMemoryWrite() Average Execution Time, Calculated
After 100 Consecutive Executions

 Windows*
[TSC ticks]

Commercial RTOS
[TSC ticks]

Ratio
(RTOS/Win)

Release 2,374,306 3,851,909 1.6

Debug 3,221,116 4,671,192 1.4

These results correlates to the one-to-two ratio reported in Ref [1], when
trying to access variables on the data segment with segment base addresses
other than zero.

In both cases, the measured ratio is not exactly equal to the theoretical
value, since the portion of the code under test (based on a for() loop) also

includes instructions different from the pure memory store.

Lesson Learned

The purpose of the functions described earlier was to deliberately stress the
processor memory access with non-zero segment base addresses, therefore
the results are not representative of the code execution time in a real
software application.

However some general guidelines can be extrapolated.

Segmentation-based Memory Protection Mechanism on

Intel® Atom™ Microarchitecture: Coding Optimizations

 13

Guideline 1: Paging-based memory protection mechanisms are
preferred over segmentation when deploying software applications
explicitly for the Intel® Atom™ microarchitecture.

This conclusion comes from the analysis of the delays reported in the
memory access when operating with non-zero segment base values.
Unfortunately, this rule often cannot be followed, since the segmentation-
based protection mechanism is needed by design and/or the platform based
on the Intel® Atom™ processor is not the only supported platform.
Consequently, further code optimizations may be required.

Guideline 2: When using the segmentation-based protection
mechanism, limit the number and size of automatic variables inside
C functions.

If the number and size of automatic variables is limited, an optimized
compiler can generate assembly code that performs almost no access
operations on the stack (all the access operations are to/from CPU registers).
Whenever the handling of big data structures is required, those structures
should be allocated in the data segment, limiting in this way the performance
penalty to be paid for the read/write access.

When using non-zero segment base addresses, code snippets such as the
following should be avoided when developing for the Intel® Atom™
microarchitecture. Since the buffer array will be allocated on the stack,

access to this array will be sub-optimal.

#define BUFFER_SIZE 1024

void Function (void)

{

 unsigned char buffer[BUFFER_SIZE];

…

Guideline 3: When using the segmentation-based protection
mechanism, the use of C compilers explicitly optimized for Intel®
Atom™ architecture is preferred, avoiding the debug build options.

The reduction of the number of memory access operations (using transfers
to/from CPU registers as an alternative) is a general principle valid for every
application that needs performance enhancements. However, this becomes
even more critical on Intel® Atom™ microarchitecture when the
segmentation-based memory protection mechanism is adopted.

The use of an optimized compiler and a release build configuration can
significantly reduce the performance difference between zero and non-zero
segment base memory addressing.

Segmentation-based Memory Protection Mechanism on
Intel® Atom™ Microarchitecture: Coding Optimizations

14

The binary compiled with typical debug configurations does not introduce
code optimizations and results in almost all the access operations to/from
system memory, causing higher execution times when segments base
registers are non-zero.

Conclusion

The details on the memory protection mechanism implemented by the OS
and/or the run-time execution environment can have a significant impact on
performance when deploying software applications for the Intel® Atom™
microarchitecture.

Whenever possible, paging-based protection mechanisms should be preferred
over solutions based on segmentation, since the same code running with
non-zero segment base registers values can experience a delay in the access
operations on the system memory.

However, when segmentation is needed by design, good coding techniques
and the use of compilers optimized for the Intel® Atom™ microarchitecture
can reduce the performance gap, significantly improving performance.

Segmentation-based Memory Protection Mechanism on

Intel® Atom™ Microarchitecture: Coding Optimizations

 15

Reference list

[1] Intel® 64 and IA-32 Architectures Optimization Reference Manual
 http://www.intel.com/Assets/PDF/manual/248966.pdf

[2] Intel® 64 and IA-32 Architectures Software Developer’s Manual
 Volume 2 (2A & 2B): Instruction Set Reference, A-Z
 http://www.intel.com/Assets/PDF/manual/325383.pdf

[3] How to Benchmark Code Execution Times on Intel® IA-32 and
 IA-64 Instruction Set Architectures
 http://download.intel.com/embedded/software/IA/324264.pdf

[4] Intel® 64 and IA-32 Architectures Software Developer’s Manual
 Volume 1: Basic Architecture
 http://www.intel.com/Assets/PDF/manual/253665.pdf

http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/325383.pdf
http://download.intel.com/embedded/software/IA/324264.pdf
http://www.intel.com/Assets/PDF/manual/253665.pdf

Segmentation-based Memory Protection Mechanism on
Intel® Atom™ Microarchitecture: Coding Optimizations

16

The Intel® Embedded Design Center provides qualified developers with web-
based access to technical resources. Access Intel Confidential design
materials, step-by step guidance, application reference solutions, training,
Intel’s tool loaner program, and connect with an e-help desk and the
embedded community. Design Fast. Design Smart. Get started today.
http://intel.com/embedded/edc.

Author

Leonardo Potenza is a Software Engineer with the Embedded and
Communications Group at Intel Corporation.

Contributors

Adrian Hoban is a Software Engineer with the Embedded and
Communications Group at Intel Corporation.

Maryam Tahhan is a Software Engineer with the Embedded and
Communications Group at Intel Corporation.

James McGinley is a Solution Architect with the Embedded and
Communications Group at Intel Corporation.

Peter Mangan is an Engineering Manager with the Embedded and
Communications Group at Intel Corporation.

Kevin Finucane is a Software Program Manager with the Embedded
and Communications Group at Intel Corporation.

Acronyms

OS Operating System

RTOS Real-Time Operating System

AGU Address Generation Unit

CS Code Segment

SS Stack Segment

DS Data Segment

TSC Time Stamp Counter

CRB Customer Reference Board

http://intel.com/embedded/edc

Segmentation-based Memory Protection Mechanism on

Intel® Atom™ Microarchitecture: Coding Optimizations

 17

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN
WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION
WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted

herein.

Any software source code reprinted in this document is furnished for informational purposes only

and may only be used or copied and no license, express or implied, by estoppel or otherwise, to

any of the reprinted source code is granted by this document.

Notice: Software and workloads used in performance tests may have been optimized for

performance only on Intel microprocessors. Performance tests, such as SYSmark and

MobileMark, are measured using specific computer systems, components, software, operations

and functions. Any change to any of those factors may cause the results to vary. You should

consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other

products.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-

GOLD, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,

Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel

SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo,

Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru

soundmark, Itanium, Itanium Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, Puma, skoool, the

skoool logo, SMARTi, Sound Mark, The Creators Project, The Journey Inside, Thunderbolt, Ultrabook,

vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel

Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011 Intel Corporation. All rights reserved.

§

