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Executive Summary 

The Intel® Atom™ processor is explicitly designed to achieve efficient 

performance and low-power operation, adopting special in-order 

microarchitecture. The development of highly-optimized software 

applications requires the use of specific coding techniques.  

The purpose of this paper is to emphasize some aspects of the segmented 

memory protection mechanism implemented in the Intel® Atom™ 

microarchitecture. A developer can use this information to create a 

higher-performing solution. 

The purpose of this paper is to emphasize some aspects of the 

segmented memory protection mechanism implemented in the Intel® 

Atom™ microarchitecture. A developer can use this information to 

create a higher-performing solution. 

The idea is to provide the software developer with guidelines to 

understanding the different performance characteristics available 

depending on how the segmented memory is configured and to propose 

techniques that can be used to improve performance.  
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The Intel® Embedded Design Center provides qualified developers with 

web-based access to technical resources. Access Intel Confidential design 

materials, step-by step guidance, application reference solutions, training, 

Intel’s tool loaner program, and connect with an e-help desk and the 

embedded community. Design Fast. Design Smart. Get started today. 

www.intel.com/embedded/edc.  

http://www.intel.com/embedded/edc
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Introduction 

The development of a complex multi-tasking software application requires a 
suitable execution environment. One important feature that almost all the 
multi-tasking operating systems must provide to ensure safe execution of the 
code is a memory protection mechanism.  

The run-time environment must prevent a process from touching memory 
areas that belong to other processes or to the operating system. The IA-32 
architecture provides multiple methods for protecting memory, with a view to 
simplifying OS programming. 

Paging - The Flat Memory Model 

For various reasons, almost all the modern operating systems prefer to base 
their memory protection implementation purely on the services provided by 
the processor’s Paging Logic. 

The widely adopted memory model is the so called “Flat Memory Model”. All 
applications see the full virtual address space starting at base address 0. 

Before executing an application, the operating system creates a set of virtual-
to-physical address mapping tables. During the execution, all the generated 
addresses are submitted to the Paging Logic for a lookup in the application’s 
page tables. In addition to the actual virtual-to-physical address conversion, 
each page table entry contains a set of other information (for example, the 
read/write attribute of the page, the privilege level the program in execution 
must meet) allowing the Paging Logic to grant or deny access to the memory 
area.  

The Flat Memory Model implementation has to guarantee that paging is the 
only active memory protection mechanism. The processor’s Segmentation 
Logic must be disabled, by programming all the processor segments with 
base address value 0 and a size equal to the available address space length. 

Segmentation 

Even if not so common, there are cases where the memory protection 
mechanism is based on the services provided by the processor’s 
Segmentation Logic.  

In the Segmented Memory Model, different applications see different address 
spaces. Moreover, the same application can have different memory areas for 
different types of segments (Code Segments, Data Segments and Task State 
Segments). Every segment has its own base address and size. Any attempt 
to access memory areas outside the segment boundaries is prevented by the 
Segmentation Logic run-time checks. 
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The handling of the segmentation mechanism is usually more complicated, 
both for the application and for the OS kernel code, but the flexibility that can 
be obtained may be useful in some software solutions. 

The use of the segmentation mechanism for memory protection can be found 
in a number of scenarios such as when dealing with legacy embedded 
applications or when a conventional OS needs to co-exist with a run-time 
environment. Some products protect the run-time environment from the 
standard OS using segmented memory addressing. Sometimes, segmented 
memory addressing is used instead of paging to help meet some specific real-
time requirements. 

Segmentation Details on Intel® Atom™ 

Microarchitecture 

The implementation of the segmentation mechanism on Intel® Atom™ 
microarchitecture is completely backward compatible with the IA-32 
instruction set. 

Special implementation details should be taken into account when deciding to 
deploy the code on a platform featuring the Intel® Atom™ processor. 

The Intel® 64 and IA-32 Architectures Optimization Reference Manual Ref [1] 
describes how to optimize software to take advantage of the performance 
characteristics of IA-32 and Intel 64 architecture processors. As reported in 
the specific chapter dedicated to the Intel® Atom™ microarchitecture, the 
Address Generation Unit (AGU) assumes that the segment base is zero by 
default.  

The software developer should be aware that, when using segment base 
values different than zero, the load and store operations (access to and from 
memory) take longer to complete than a similar operation with a zero stored 
in the segment base register. 

Segment Base Unaligned to Cache Line Boundary 

An operating condition that should be avoided is the use of non-zero segment 
base values that are not aligned to a cache line boundary. The maximum 
throughput of a MOV operation in this case is reduced to one every nine 
cycles (instead of one every cycle). 

The selection of the segment base values has to be carefully considered at 
the OS or run-time framework implementation level. The software application 
developer should never need to cope with this particular situation. 
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Memory Access Through the Code Segment 

The Code Segment (CS) register points to the memory area in which the 
processor instructions are stored. When loading data from memory, the use 
of the CS can be explicitly specified, overriding the default segment selector:  

For example: MOV AL, CS:[BX] 

Using a non-zero value for CS, the maximum throughput of a memory read 
operation is reduced to one every nine cycles (instead of one every cycle), 
even if the base value is cache aligned. 

String Operations Using the ES Base Register 

The ES register points to one of the data segments that can be used for 
efficient and secure access to different types of data structures. 

An important recommendation that needs to be considered when writing 
optimized code that deals with a string operation is to favor instructions that 
make implicit use of the ES base register for the destination operand. The 
maximum throughput is one operation every two cycles. The maximum 
throughput becomes significantly lower (one operation every nine cycles) in 
all other cases. 

However, it is important to note that this performance optimization is useful 
only for assembly language programmers or compiler developers that need to 
generate optimized code for the Intel® Atom™ microarchitecture. 

Memory Access Through the Data Segment and 
Stack Segment 

Two cases where the software developer’s choices can have significant impact 
on code execution times are when the application needs to access data 
structures in memory through1) the Stack Segment and 2) the Data 
Segment. 

The Data Segment (DS) register points to the default segment involved when 
loading data from memory and storing data in memory (unless an explicit 
segment override has been specified).  

The Stack Segment (SS) register points to the data area where the procedure 
stack is stored for the handler, program or task currently in execution. The 
stack segment is selected for all stack pushes and pops and for any memory 
reference that uses the ESP (stack pointer) and EBP (base pointer) as a base 
pointer (for further details, refer to Ref [4]).  

Assuming that the non-zero segment base values are cache aligned, the 
introduced penalty in the memory access varies depending on the particular 
segment being used. 
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The maximum throughput of a MOV operation using the Data Segment (DS) 
is reduced to one every two cycles (instead of one every cycle). 

On the other hand, the price of using the stack segment is much higher. The 
maximum throughput of a MOV operation using the Stack Segment (SS) is 
reduced to one every nine cycles. 

Data Segment vs Stack Segment: 

Write Memory Access Case Study 

The purpose of this section is to show the importance of the segmentation 
details using simple practical examples. 

For simplicity, only the write memory access case study is covered, but 
similar examples might be derived using the same methodology. 

Using the Intel processor’s internal Time Stamp Counter (TSC) and the 
related instructions for time reading, it is quite straightforward to measure 
the various memory access delays. 

In the following sections, a read operation of the current value of the 
processor’s TSC is represented by calling the generic C function 

extern uint64_t getTscValue(void); 

Refer to the available documentation Ref [2] Ref [3] for the details on how to 
implement the above function using the Intel instruction set. 

Write Access on Stack Segment 

To reproduce a write access to a variable in the stack segment, the code 
snippet that can be used is trivial: 
 
#define LOOP_CYCLES_NUMBER 100000 

 

uint64_t StackMemoryWrite (void) 

{ 

    volatile long a; 

    int           i; 

    uint64_t      elapsedTime; 

    uint64_t      tscTicksBefore; 

    uint64_t      tscTicksAfter; 

 

    tscTicksBefore = getTscValue(); 

     

    for (i = 0; i < LOOP_CYCLES_NUMBER; i++) 

    { 

/* Dummy write accesses on 'a' memory variable  

   using stack segment */ 
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        a = 1;    a = 2;    a = 3;    a = 4;    a = 5; 

        a = 6;    a = 7;    a = 8;    a = 9;    a = 10; 

    } 

     

    tscTicksAfter = getTscValue(); 

 

    elapsedTime = tscTicksAfter - tscTicksBefore; 

  

    return elapsedTime; 

} 

Basically, the StackMemoryWrite() function returns the number of TSC ticks 

needed to carry out a given number of write accesses to the dummy variable 
a (100000 * 10 in the example). 

The use of the volatile attribute prevents the compiler from performing 

code optimizations on the access to the variable a, which is clearly allocated 

on the stack segment. 

For instance, this is how the Microsoft Visual Studio* 2010 compiler 
translates the code in the for() loop in assembly language, generating the 

expected number of write memory accesses on the stack segment: 
 

 

… 

 mov edx, 9 

 mov eax, 100000    ; 000186a0H 

 lea ecx, DWORD PTR [edx+1] 

$LL3@StackMemor: 

 

; 253  :      

; 254  :     for (i = 0; i < LOOP_CYCLES_NUMBER; i++) 

 

 dec eax 

 

; 255  :     { 

; 256  : /* Dummy write accesses on 'a' memory variable  

; 257  :    using stack segment */ 

; 258  :         a = 1;    a = 2;    a = 3;    a = 4;    a = 5; 

 

 mov DWORD PTR _a$[esp+16], 1 

 mov DWORD PTR _a$[esp+16], 2 

 mov DWORD PTR _a$[esp+16], 3 

 mov DWORD PTR _a$[esp+16], 4 

 mov DWORD PTR _a$[esp+16], 5 

 

; 259  :         a = 6;    a = 7;    a = 8;    a = 9;    a = 10; 

 

 mov DWORD PTR _a$[esp+16], 6 

 mov DWORD PTR _a$[esp+16], 7 

 mov DWORD PTR _a$[esp+16], 8 

 mov DWORD PTR _a$[esp+16], edx 

 mov DWORD PTR _a$[esp+16], ecx 

 jne SHORT $LL3@StackMemor 
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… 

 

Write Access on Data Segment 

To reproduce the same type of write access to a variable in the data 
segment, the above code snippet can be modified as follows: 
 

 

#define LOOP_CYCLES_NUMBER 100000 

 

volatile long a; 

 

uint64_t DataSegmentMemoryWrite (void) 

{ 

    int           i; 

    uint64_t      elapsedTime; 

    uint64_t      tscTicksBefore; 

    uint64_t      tscTicksAfter; 

 

    tscTicksBefore = getTscValue(); 

     

    for (i = 0; i < LOOP_CYCLES_NUMBER; i++) 

    { 

        /* Dummy write accesses on 'a' memory variable  

           using data segment */ 

        a = 1;    a = 2;    a = 3;    a = 4;    a = 5; 

        a = 6;    a = 7;    a = 8;    a = 9;    a = 10; 

    } 

     

    tscTicksAfter = getTscValue(); 

 

    elapsedTime = tscTicksAfter - tscTicksBefore; 

  

    return elapsedTime; 

} 

 

The new DataSegmentMemoryWrite() function returns the number of TSC 

ticks needed to carry out a given number of write accesses to the dummy 
variable a (100000 * 10 in the example). 

The use of the volatile attribute prevents the compiler from performing 

code optimizations on the access to the variable a, which is clearly allocated 

on the data segment. 

For instance, this is how the Microsoft Visual Studio* 2010 compiler 
translates the code in the for() loop in assembly language, generating the 

expected number of write memory accesses on the data segment: 
 

 

… 

mov edx, 9 

 mov eax, 100000    ; 000186a0H 
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 lea ecx, DWORD PTR [edx+1] 

 npad 5 

$LL3@DataSegmen: 

 

; 280  :      

; 281  :     for (i = 0; i < LOOP_CYCLES_NUMBER; i++) 

 

 dec eax 

 

; 282  :     { 

; 283  :         /* Dummy write accesses on 'a' memory variable  

; 284  :            using data segment */ 

; 285  :         a = 1;    a = 2;    a = 3;    a = 4;    a = 5; 

 

 mov DWORD PTR ?a@@3JC, 1   ; a 

 mov DWORD PTR ?a@@3JC, 2   ; a 

 mov DWORD PTR ?a@@3JC, 3   ; a 

 mov DWORD PTR ?a@@3JC, 4   ; a 

 mov DWORD PTR ?a@@3JC, 5   ; a 

 

; 286  :         a = 6;    a = 7;    a = 8;    a = 9;    a = 10; 

 

 mov DWORD PTR ?a@@3JC, 6   ; a 

 mov DWORD PTR ?a@@3JC, 7   ; a 

 mov DWORD PTR ?a@@3JC, 8   ; a 

 mov DWORD PTR ?a@@3JC, edx  ; a 

 mov DWORD PTR ?a@@3JC, ecx  ; a 

 jne SHORT $LL3@DataSegmen 

Write Memory Access: Experimental Data 

To show the importance of the implementation of the segmentation-based 
protection mechanism on Intel® Atom™ architecture, a simple test has been 
carried out. 

The above StackMemoryWrite() and DataSegmentMemoryWrite() functions 

have been executed on the Intel® Atom™ Processor N450 with the Intel® 
82801HM I/O Controller Hub Customer Reference Board (CRB), using two 
different run-time environments: Windows* 7 and a commercial RTOS 
implementing the segmentation-based memory protection mechanism using 
non-zero segment base addresses. 

The code has been compiled in both release and debug modes using the two 
development environments. The debug configuration is a build option 
typically used in the software development phase, as the generated binary 
includes additional symbolic debug information and the generated code is not 
optimized for execution (the idea is to facilitate source code debugging). The 
release configuration is a build option especially designed for the final product 
release. The code is optimized to reduce the execution time and the size of 
the generated binary (no extra symbols are included).  
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Due to the simplicity of the original C code, there were no significant 
differences between the assembly code generated by the two compilers. 

The following table reports the experimental results for the function 
simulating the write accesses to the stack segment. 

Table 1. StackMemoryWrite() Average Execution Time, Calculated After 100 
Consecutive Executions 

 Windows* 
[TSC ticks] 

Commercial RTOS 
[TSC ticks] 

Ratio 
(RTOS/Win) 

Release 1,684,050 15,029,565 8.92 

Debug 2,357,713 19,685,439 8.34 

The experimental data correlates to the one-to-nine ratio reported in Ref [1] 
when trying to access variables on the stack segment with segment base 
addresses other than zero.  

The following table refers to the function performing write access to the data 
segment. 

Table 2. DataSegmentMemoryWrite() Average Execution Time, Calculated 
After 100 Consecutive Executions 

 Windows* 
[TSC ticks] 

Commercial RTOS 
[TSC ticks] 

Ratio 
(RTOS/Win) 

Release 2,374,306 3,851,909 1.6 

Debug 3,221,116 4,671,192 1.4 

These results correlates to the one-to-two ratio reported in Ref [1], when 
trying to access variables on the data segment with segment base addresses 
other than zero. 

In both cases, the measured ratio is not exactly equal to the theoretical 
value, since the portion of the code under test (based on a for() loop) also 

includes instructions different from the pure memory store. 

Lesson Learned 

The purpose of the functions described earlier was to deliberately stress the 
processor memory access with non-zero segment base addresses, therefore 
the results are not representative of the code execution time in a real 
software application. 

However some general guidelines can be extrapolated. 
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Guideline 1: Paging-based memory protection mechanisms are 
preferred over segmentation when deploying software applications 
explicitly for the Intel® Atom™ microarchitecture. 

This conclusion comes from the analysis of the delays reported in the 
memory access when operating with non-zero segment base values. 
Unfortunately, this rule often cannot be followed, since the segmentation-
based protection mechanism is needed by design and/or the platform based 
on the Intel® Atom™ processor is not the only supported platform. 
Consequently, further code optimizations may be required. 

Guideline 2: When using the segmentation-based protection 
mechanism, limit the number and size of automatic variables inside   
C functions. 

If the number and size of automatic variables is limited, an optimized 
compiler can generate assembly code that performs almost no access 
operations on the stack (all the access operations are to/from CPU registers). 
Whenever the handling of big data structures is required, those structures 
should be allocated in the data segment, limiting in this way the performance 
penalty to be paid for the read/write access. 

When using non-zero segment base addresses, code snippets such as the 
following should be avoided when developing for the Intel® Atom™ 
microarchitecture. Since the buffer array will be allocated on the stack, 

access to this array will be sub-optimal. 
 

#define BUFFER_SIZE 1024 

 

void Function (void) 

{ 

    unsigned char buffer[BUFFER_SIZE]; 

… 

 

Guideline 3: When using the segmentation-based protection 
mechanism, the use of C compilers explicitly optimized for Intel® 
Atom™ architecture is preferred, avoiding the debug build options.  

The reduction of the number of memory access operations (using transfers 
to/from CPU registers as an alternative) is a general principle valid for every 
application that needs performance enhancements. However, this becomes 
even more critical on Intel® Atom™ microarchitecture when the 
segmentation-based memory protection mechanism is adopted. 

The use of an optimized compiler and a release build configuration can 
significantly reduce the performance difference between zero and non-zero 
segment base memory addressing. 



Segmentation-based Memory Protection Mechanism on  
Intel® Atom™ Microarchitecture: Coding Optimizations 

14    

The binary compiled with typical debug configurations does not introduce 
code optimizations and results in almost all the access operations to/from 
system memory, causing higher execution times when segments base 
registers are non-zero. 

Conclusion 

The details on the memory protection mechanism implemented by the OS 
and/or the run-time execution environment can have a significant impact on 
performance when deploying software applications for the Intel® Atom™ 
microarchitecture. 

Whenever possible, paging-based protection mechanisms should be preferred 
over solutions based on segmentation, since the same code running with 
non-zero segment base registers values can experience a delay in the access 
operations on the system memory. 

However, when segmentation is needed by design, good coding techniques 
and the use of compilers optimized for the Intel® Atom™ microarchitecture 
can reduce the performance gap, significantly improving performance. 
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